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The following addenda contain extensions and extra results.

In Addendum I we show why it is without loss of generality to normalize some

parameters of the model.

In Addendum II we show that ODE (15) has a unique solution.

In Addendum III we study the impact of releasing public information in Vives

(1993) original discrete time model.

In Addendum IV we show that an optimal affine control is always a convex

combination of the public and private forecasts.

In Addendum V we detail the dynamic programming result leading to the

Hamilton Jacobi Bellman equation (20).

In Addendum VI we show that the results in the paper extend to the case of a

non-degenerate common prior.

In Addendum VII we provide a the dynamic of the belief distribution in the

population.

In Addendum VIII we provide some natural applications of our abstract learning

model.
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I Normalization

The main ODE of the paper is:

ṗt = pε

�
pt

α + βpt

�2

,

where α = P0 − Pε
pε
p0 and β = 1 + Pε/pε. Let us denote the solution of this ODE

by φ(t; p0, P0, pε, Pε), to make the dependence on initial conditions and exogenous

parameter explicit. We now propose two normalizations. First, we have:

Lemma 13. For all (p0, P0, pε, Pε) and all k > 0:

φ(t; p0, P0, pε, Pε) = φ
�
kt; p0, P0,

pε
k ,

Pε
k

�
.

This means that scaling the level of noise precision up and down by k is equivalent

to scaling time by the same factor. To see this, let p̃t ≡ φ
�
kt; p0, P0,

pε
k ,

Pε
k

�
and note

that scaling of pε and Pε leaves α and β the same. So:

˙̃pt =
d

dt
φ
�
kt; p0, P0,

pε
k ,

Pε
k

�
= k

pε
k

�
p̃t

α + βp̃t

�2

= pε

�
p̃t

α + βp̃t

�2

.

So pt and p̃t solve the same ODE and have the same initial condition: they must

coincide at all times. QED

Another normalization is given by:

Lemma 14. For all (p0, P0, pε, Pε) and all k > 0:

φ (t; kp0, kP0, kpε, kPε) = kφ(t; p0, P0, pε, Pε). (I.1)

This says that scaling all precisions, (p0, P0, pε, Pε), up and down by the same

factor is equivalent to scaling up the path of private information. To see this, let
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p̃t ≡ 1
kφ (t; 1, kp0, kP0, kpε, kPε), α̃ = kα and β̃ = β. We have

˙̃pt =
1

k

d

dt
φ (t; kp0, kP0, kpε, kPε) =

1

k
kpε

�
kp̃t

α̃ + βkp̃t

�2

= pε

�
kp̃t

kα + βkp̃t

�2

= pε

�
p̃t

α + βp̃t

�2

and we are done. QED

Taken together, the two lemmas of this addendum imply that:

φ(t; p0, P0, pε, Pε) = p0φ

�
Pε

p0
t; 1,

P0

p0
,
pε
Pε

, 1

�
.
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II A note on the ODE of Section 4.1.1

Lemma 15. Suppose that Πt and πt are increasing and piecewise continuously dif-

ferentiable. Then, starting from any initial condition P0, ODE (15) has a unique

solution.

Because of piecewise continuous differentiability, there exists a strictly increasing

sequence t0 < t2 < . . . < tK where K ≤ ∞ and tK = ∞, such that the functions

Πt and πt are continuously differentiable on each interval [tk, tk+1) for all k < K.

Starting from any initial condition Ptk , we can construct a path of public precision

by solving the ODE:

Ṗt = Pε

�
πt

Pt + πt

�2

+ Π̇t

on every interval [tk, tk+1). Moreover, it is easy to see that the maximal solution of

the ODE is defined on the entire interval. Otherwise, suppose the maximal solution

was defined over [tk, T ), for T < tk+1. Since Pt is increasing, it has a limit as t → T .

Moreover,

Ṗt ≤ Pε + Π̇t ⇒ Pt ≤ Pε(T − tk) + ΠT − Πtk ,

so the limit is finite. But then, one can extend the solution of the ODE further

starting at time T from limt→T Pt. This is a contradiction since we assumed that Pt

were a maximal condition. Having constructed a solution over [tk, tk+1), we let

Ptk+1
= lim

t→t−k+1

Pt +Πt+k+1
− Πtk , (II.1)

and proceeding by induction we obtain a path of public precision which is well defined

over [0,∞). Moreover, the standard uniqueness result applies: i.e. two solutions

starting from the same initial condition must coincide at all times. Indeed, consider

two solutions starting from the same initial condition and suppose that they start

differing after some time s > 0. Then if s �= tk, by continuity we find that the two

solutions coincide at s. If s = tk, then by continuity the two solutions coincide at t−k

and, because of (II.1) at tk as well. Thus, the standard local uniqueness result imply

that the two solution coincides just after s, which is a contradiction.
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III Public information releases in Vives’ discrete

time model

In Vives (1993), public precision evolves according to:

Pt+1 = Pt + Pε

�
p0

p0 + Pt

�2

= F (Pt). (III.1)

The graph of F (P ) is shown in Figure 2. Since it lies strictly above the 45 degree

line, it follows that Pt is increasing and goes to infinity as t goes to infinity. Another

property of that is key for explaining the effect of public information is that F (P ) is

decreasing over the interval [0, Pm], where

Pm = max{p0
��

2Pεp0 − 1
�
, 0},

and increasing for P > Pm.

If P0 ≥ Pm, then more public information at the beginning increases knowledge

in times that follow. Suppose it did not: that is, consider the first time t such that a

precision sequence with more initial public information, P �
t , moves below a sequence

with less initial public info, Pt. By construction at time t− 1,

P �
t−1 > Pt−1 > P0 ≥ Pm.

Since F (P ) is increasing for P > Pm, it follows from these inequalities that P �
t =

F (P �
t−1) > Pt = F (Pt−1), which is a contradiction.

If P0 < Pm, then since F (P ) is decreasing at P0 it follows that more initial public

information (i.e. a slightly higher P0) reduces P1. Since P1 = F (P0) ≥ F (Pm) > Pm,

then the reasoning of the previous paragraph shows that the precision sequence is

also lower at all subsequent times.

Lastly, note that, since P1 > Pm for any P0, it follows that if the planner has one

piece of public information to release either at time t = 0 or at time t = 1, he will

always want to release it, at least at time t = 1.

Proposition 3. Suppose public precision evolve according to the difference equation
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(III.1). Then, a marginal increase in time t public information, Pt, increases precision

at all times s ≥ t if and only if (i) t = 0 and P0 ≥ Pm, or (ii) t ≥ 1.

Note that if Pε is small enough, then Pm = 0 and increasing public information

at time zero always increase precision.

Pt

Pt+1

F (P )

Pm

F (Pm)

Figure 2: Precision dynamics in Vives.

6



IV General affine controls

Lemma 16. In the planner’s problem, an optimal affine control is of the form:

ait = (1− γt)X̂t + γtx̂it.

Indeed, suppose that, at time t, the planner uses a control of the form:

ait = κt + ΓtX̂t + γtx̂it (IV.1)

This implies that:

ait − x = κt + (Γt + γt − 1) X̂t + (1− γt)
�
X̂t − x

�
+ γt (x̂it − 1) .

But all terms on the right-hand side are uncorrelated with one another each others.

First, the forecast errors X̂t − x and x̂it − x are uncorrelated because they are based

on independent information. The public forecast is uncorrelated from the public

forecast error by construction. Lastly, the public forecast is independent from the

private forecast error because private forecast errors are idiosyncratic. Thus:

E
�
(ait − x)2

�
= E

��
κt + (Γt + γt − 1) X̂t

�2
�
+

γ2
t

pt
+

(1− γt)2

α + (β − 1)pt
.

Since κt and Γt do not affect the law of motion of precision, it is clearly optimal for

the planner to minimize the first term with respect to κt and Γt, i.e. to set κt = 0

and Γt = 1− γt. QED
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V The results leading to Lemma 9

Proposition 2.8, page 104 in Bardi and Capuzzo-Dolcetta (1997) states that the value

function is a viscosity solution of an appropriate HJB equation. Note that Lemma

8 implies that V (p) is locally Lipschitz. Thus, we can apply Theorem 2.40, in page

128, together with Remark 2.43, in page 131, to show that value function solves the

following HJB equation,1, 2

λV (p) = sup
(u,q)∈Φ(p)

�
u+ qV �(p+)

�
, (V.1)

where for every p

Φ(p) ≡
�
(u, q)

���u = θu(p, γ) + (1− θ)u(p, γ�); q = θpεγ
2 + (1− θ)pεγ

�2;

for some (γ, γ�, θ) ∈ [0, 1]3
�
,

and where

u(p, γ) = −λ

�
γ2

p
+

(1− γ)2

α + (β − 1)p

�
.

Note that, for all (u, q) ∈ Φ(p), there is some (γ, γ�, θ) ∈ [0, 1]3 such that:

u+ qV �(p+) = θu(pγ) + (1− θ)u(pγ�) + (θγ2 + (1− θ)γ�2)pεV
�(p+)

≤ u
�
p,
�

θγ2 + (1− θ)γ�2
�
+ (θγ2 + (1− θ)γ�2)pεV

�(p+) (V.2)

= u (p, γ��) + γ��2pεV
�(p+).

where inequality (V.2) follows from the concavity of g �→ u(p,
√
g) and

γ�� ≡
�

θγ2 + (1− θ)γ�2 ∈ [0, 1].

1The infinite-horizon optimal control problem of Bardi and Capuzzo-Dolcetta is formulated with
the state space RN and requires that the utility flow function to be bounded. This is different from
our problem in which the state space is R2

+ and the utility flow unbounded as either p or P go to
zero. We can nevertheless apply their results by using the change of variable p = max{x, p0}, where
x ∈ R2.

2The derivative that appears in Bardi and Capuzzo-Dolcetta is a one-sided directional derivative,
but in our one dimensional state space it coincides with the right-derivative shown in the appendix.
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And thus we can reduce the search for an optimal control to a value of γ ∈ [0, 1],

which delivers the HJB equation of the Lemma.

For the existence of the optimal control we use Theorem 2.61 part (ii) in page 142

of Bardi and Capuzzo-Dolcetta (1997) together with Remark 2.62 in page 142, which

imply that

γ∗
t = γ∗(pt) ≡ arg max

γ∈[0,1]

�
u(p∗t , γ) + γ2V �((p∗t )

+)
�

(V.3)

where p∗t = p+
� t

0 (γ
∗
t )

2dt, is an optimal control.
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VI Non-degenerate Common Prior

In this Addendum we provide the formulas for agents’ belief when the prior is non

degenerate, i.e. with a strictly positive precision P̄ . We assume that the precision

of the initial public signal is P0 − P̄ : this implies that, given the common prior and

after observing the initial public signal, agents’ posterior precision is P0, just as in the

paper. Then, one easily verify that all the results on precision and welfare go through

identically. There is one small difference, in Lemma 1 concerning the dynamic of the

public forecast:

Lemma 17. With a non-degenerate prior precision P̄ , all formulas characterizing the

dynamic of public precision, Pt, private precision, pt, and private forecast, x̂it, stay

the same. The only difference is that the stochastic integral for the public forecast

becomes:

X̂t =

�
1− P̄

Pt

�
x+

1

Pt

��
P0 − P̄W0 +

� t

0

�
Pε

pt
Pt+pt

dWu

�
(VI.1)

Indeed, going through the exact same step as in the proof of Lemma 1, we arrive

at (31). But then we have to plug in a different expression for X̂0, the posterior public

forecast given the public signal and the common prior. Indeed, when P̄ > 0, we have:

X̂0 =

�
1− P̄

P0

��
x+

W0�
P0 − P̄

�
.

The result then follows. Note that, when P̄ = 0, we obtain the same expression as in

Lemma 1.
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VII Cross-sectional Beliefs

VII.1 A Preview

In what follows, we characterize the dynamic behavior of the distribution of agents’

beliefs in closed form. We show that, as long as there is a sufficiently active private

information channel, the average belief converges along an S-shaped curve, as long

as the initial information is sufficiently dispersed and the private channel is active.3

Agents can become more and more confident about the information they gathered

privately, taking actions that are increasingly sensitive to this private information.

This makes the private and public learning channels more informative, generating

more precise signals, faster learning and in some cases, a convex learning curve at the

beginning. On the other hand, convergence to the truth implies that, in the limit, the

average belief is concave. Although the average belief follows an S-shaped curve, we

show that the cross-sectional dispersion of agents’ beliefs will converge to zero along

a hump-shaped curve. Indeed, when agents learn privately, they learn independently,

and their learning histories are increasingly heterogeneous: hence, the dispersion of

beliefs might increase early on. However, this dispersion eventually must converge

to zero as agents learn the truth. Importantly, we show that when agents learn only

from a public channel and the private channel is shut down, then the S and the hump

disappear: the average belief converges to the truth along a concave curve, and the

dispersion of beliefs converges to zero along a decreasing curve.

VII.2 The Results

Consider the model where the prior is non degenerate, P̄ > 0. In the present normal-

quadratic framework, the distribution of beliefs in the population is also normal and

3The S-shaped pattern has been documented in a number of empirical studies of social learning.
See Chamley (2004, chap. 9) and also Jovanovic and Nyarko (1995)). See also the subsequent
learning models of Fernandez (2007) and Fogli and Veldkamp (forthcoming) to explain the S shape
in women labor force participation.
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can be characterized in closed form. To see this, recall that the action of agent i is

ait =
pt

pt + Pt
x̂it +

Pt

pt + Pt
X̂t , (VII.1)

and that an agent’s action is the same as her belief. Then, equations (VI.1) and

(29) imply that cross-sectional beliefs are normally distributed, and therefore entirely

characterized by their average and dispersion. Taking expectations conditional on x,

it follows that

E [ait | x] = E [At|x] = x

�
1− P̄

pt + Pt

�
, (VII.2)

and so the rate at which the expected average belief converges to the truth is the

same as the rate at which the variance of an agent’s belief, 1/(pt + Pt), approaches

zero.

The cross-sectional dispersion of beliefs, or actions, also can be computed. Given

that the second term in the right hand side of equation (VII.1) is common across all

agents, the cross-sectional dispersion is simply the variance of the first term,

θt ≡ E[(ait − At)
2] =

pt
(pt + Pt)2

,

where the cross-sectional variance of x̂it is 1/pt. Note that the dynamics of the average

belief, or action, are given by

dE
�
ait|x

�

dt
= xP̄

ṗt + Ṗt

(pt + Pt)2
= xP̄ (pε + Pε)

�
pt

(pt + Pt)2

�2

= xP̄ (pε + Pε)θ
2
t . (VII.3)

Hence, the expected action, E[ait|x], monotonically approaches x and its changes

are proportional to the square of the cross-sectional dispersion, θt. Similarly, the

dynamics of the cross-sectional dispersion are given by

dθt
dt

=
ṗt

(pt + Pt)2
−

2pt
�
ṗt + Ṗt

�

(pt + Pt)
2 =

ṗt (pε + Pε)

(pt + Pt)2

�
pε

pε + Pε
− 2

pt
pt + Pt

�
, (VII.4)

where we used that Ṗt = Pε/pεṗt. Recall that pt/(pt + Pt) converges to pε/(pε + Pε)
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time
0.1

0.5

1.0

0 25 50 75 100

(a) Mean Belief when x = 1.

time0.008

0.010

0.012

0.014

0 25 50 75 100

(b) Dispersion.

Figure 3: This is a particular example of the dynamics of cross-sectional beliefs when
the path of the mean is S-shaped and the dispersion of belief is hump-shaped. We
choose P̄ = 9.5, P0 = 10, p0 = pε = Pε = 1.

monotonically. Together with the fact that ṗt is positive at each time, this implies

that the cross-sectional dispersion is eventually decreasing. It follows also that the

cross-sectional dispersion will have a hump shape as long as it is increasing at time

zero, that is as long as pε/(pε + Pε) > 2p0/(p0 + P0).

Finally, note that if the cross-sectional dispersion, θt, is hump-shaped, then it

follows from equation (VII.3) that the path of E[ait|x] is S-shaped. Moreover, the

inflexion time of the S corresponds to the point of highest dispersion of actions. We

have just proved the following:

Proposition 4 (S-shaped diffusion). The path of E[ait|x] monotonically approaches

x as time goes to infinity. If 2p0/(p0 + P0) < pε/(pε + Pε) then there exists a t0 > 0

such that |dE[ait|x]/dt| is increasing for all t < t0 and decreasing for all t > t0.

Otherwise, |dE[ait|x]/dt| is decreasing for all t.

As shown in the proposition and illustrated in Figure 3, the model is able to

generate an S-shaped learning curve. The convex part of the S arises because of an

information-snowballing effect as long as the initial private information is sufficiently

dispersed, i.e. its precision is sufficiently small. In that case, as agents learn privately,

they become increasingly confident about their private information. As a result, the
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weight they assign to their private information becomes larger and larger and both

the private and the public signal become more and more informative: learning is

faster and faster at the beginning. Eventually, as agents learn the truth, learning

must slow down and the learning curve becomes concave.

The hump shape of the dispersion of belief is more standard, and arises because

of the private learning channel. Initially, agents beliefs are concentrated close to their

common prior. As time goes by, agents learn privately, independently of each other.

Some become optimistic about the state, and others pessimistic, which means that

the dispersion of beliefs increases at the beginning. However, this dispersion must

converge to zero as agents asymptotically learn the truth.
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VIII Implications and Extensions

In this Addendum we apply and generalizes our results. In a first extension, we relax

our baseline-model assumption that agents do not learn from their own experience,

in that they cannot observe their payoffs until the state is revealed. We show that

relaxing this assumption does not significantly alter our results. Next, in a second

extension, we provide an example of public signals being generated by the observation

of market prices. We assume that firms face quadratic adjustment costs in investment

and buy capital goods in a competitive market. After some random time to build a

capital stock, these goods become inputs in a production technology with a common

but initially unknown productivity. As anticipated by our baseline model, the price of

capital generates a public signal centered around the average action, which in this case

is the average investment. Different from our baseline model, though, this example

features a payoff externality: the price of the capital affects firms’ profits, and hence

depends on the aggregate investment. We show that even in the presence of this

externality, the learning dynamics and the welfare results remain the same as in the

baseline model. The extensions demonstrate the tractability of our continuous-time

set up, and suggest that the results derived are robust to more explicit economic

environments.

VIII.1 Technology Diffusion

In many interesting economic situations, it is reasonable to assume that firms and

households learn not only from observing others’ actions but also from their own

experience. Such cases arise naturally, for example, if agents observe their realized

payoffs which are noisy signals of the underlying state. One might wonder whether

the results obtained in the baseline model generalize to this type of environment. In

this subsection, we modify our baseline model to allow for the possibility of learning

from experience: a new technology of uncertain productivity has arrived and agents

learn about it from their own use, and as before, from observing how others use it.

Suppose that agent i owns a technology that converts labor input, denoted by ait,

into units of a final good of price 1. The agent incurs a quadratic loss, a2it/2, from
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supplying labor. The productivity of this technology is assumed to be the sum of

a time-varying and random idiosyncratic component, plus an unknown but constant

component. We assume that this constant component, denoted by x, is common

across the technologies of all agents in the economy. The accumulated output up to

time τ is given by, � τ

0

�
xdt+

1

p̃ε
dω̃it

�
ait ,

where the term in brackets is the sum of x and the idiosyncratic productivity process.

We assume that ω̃it is a standard Wiener process.

For simplicity, we remove public learning from the model: Pε = 0. However, we

still assume that agents privately can observe a signal centered around the average

labor supply, with precision pε. Unlike before, we now let the agents also observe

their current output processes: agents are learning from others, but also from their

own use of this technology.

Agents optimally choose their labor decision, ait = E[x|Git]. A linear equilibrium

is obtained by decomposing the beliefs at any time into a public and a private forecast.

Given that there is no public learning, the precision of the public forecast is a constant,

P0. The precision of the private forecast, pt, follows the ODE

dpt =

�
pt

pt + P0

�2

pεdt+ p̃εdt , (VIII.1)

where the first term is the same as before, and the second term captures the knowledge

that arises from observing your own output. The following proposition characterizes

the dynamics of precision:

Proposition 5. Define

H̃(p) ≡
P0

√
pε(pε − p̃ε)√

p̃ε(p̃ε + pε)2
arctan

�
P0p̃ε + (p̃ε + pε)p

P0
√
pε

�

+
pε
√
p̃εP0

(p̃ε + pε)2
log

�
P 2
0 p̃ε + 2P0p̃εp+ (p̃ε + pε)p

2
�
+

p

pε + p̃ε
,

then, the solution to equation (VIII.1) is implicitly given by H̃(pt)− H̃(p0) = t, and
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the asymptotic expansion of pt is

pt = (p̃ε + pε)t− 2
P0pε

pε + p̃ε
log(t) +Rt,

where Rt is some bounded function.

Note that if p̃ε = 0 , this collapses to our baseline asymptotic expansion for

Pε = 0. As can be seen from the asymptotic expansion, an increase in P0, will

eventually reduce the precision pt by any finite amount, and a version of Proposition

2 holds.

VIII.2 Investment

In this subsection we introduce a market setting into our baseline mode and show

that the price that arises in equilibrium generates a public signal centered around the

average action in the population. In doing this, we also extend the baseline model by

introducing a particular payoff externality: the payoffs to any individual will depend

on the equilibrium price, which in turn is affected directly by the actions of others.

Consider an economy with two goods: a capital good and a final good. Capital

goods are produced at a marginal cost that is increasing in the aggregate capital

stock. In particular, if Kt is the aggregate stock of capital good at time t then the

cost of producing an extra unit of capital at time t is assumed to be cKt, for some

c > 0. The capital good sector is competitive, implying that the price of the capital

good at time t is cKt.

There are a continuum of final-goods producers who accumulate capital until

some random time τ . At that point, the final-goods market opens, and the final-goods

producers transform their capital stock into final goods using a linear technology with

marginal product x. We assume the same information structure as in our baseline

model: at time zero, final-goods producers initially are asymmetrically informed about

the state x of technology, then learn about it over time through public and private

channels to be described below, until the state is realized at time τ .

Let ait be the amount invested at time t by firm i. Agents’ profits are realized at
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the same time as x: � τ

0

�
xait − cKtait −

a2it
2

�
dt,

where the second term, cKtait is the cost of purchasing the investment and the final

term, a2it/2, is a quadratic adjustment cost.

Let At =
� 1

0 aitdi be the aggregate level of investment at time t. The total capital

stock evolves according to

dKt = At dt+
1

Pε
dWt (VIII.2)

where the term 1
Pε
dWt captures random external demand shocks for capital.

Profit maximization by final-goods producers implies that ait = Eit(x) − cKt.

Plugging this back into the previous equation, the law of motion for the capital stock

becomes

dKt =

�� 1

0

Eit(x)di− cKt

�
dt+

dWt√
Pε

.

The change in the price of the capital good, cdKt, is an endogenous public signal

about the state of technology, x. Given that the price cKt of the capital good is

known by everyone, observing cdKt is equivalent to observing

dZt =

�� 1

0

Eit(x)di

�
dt+

dWt√
Pε

. (VIII.3)

Similarly to our baseline model, here we assume that agents also observe a private

signal centered around the average action, i.e. At up to some idiosyncratic noise,

�� 1

0

Ejt(x)di− cKt

�
dt+

dωit√
pε

.

As before, given that the price cKt of the capital good is known by everyone, this

signal is observationally equivalent to

dzit =

�� 1

0

Eit(x)di

�
dt+

dωit√
pε

. (VIII.4)

The information structure is characterized by equations (VIII.3) and (VIII.4), which

are the equations in our baseline model: therefore, the evolution of precisions in our
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baseline model also characterizes the evolution of precisions in this market setting,

and our previous results concerning the dynamics and comparative statics remain

unchanged.

However, in principle, the welfare function is different because of the presence of

the cost of capital in the profits of the final-goods producers. Specifically, let us define

the welfare function as the ex ante profit of a final-goods producer,

W = E0

�� ∞

0

e−λt

�
xait −

a2it
2

− cKtait

�
dt

�
=

� ∞

0

E0

�
e−λt

�
xait −

a2it
2

− cKtait

��
dt .

Optimality implies ait = Eit(x)− cKt. Substituting into the welfare function, we find

W̃ =

� ∞

0

e−λtE0

�
−(x− Eit(x))

2 +
(x− cKt)2

2

�
.

The first term inside the brackets is the same welfare flow as in our baseline model.

We then need to compute
�∞
0 e−λtE0(x− cKt)2dt,

Proposition 6. The welfare function, W̃ , is

W̃ = − λ

λ+ 2c

� ∞

0

e−λt

pt + Pt
dt+

1/P̄ + c2(K2
0 + Pε/λ)

λ+ 2c
dt.

The last two terms reflect initial conditions that do not matter for our welfare ex-

ercise, and the first term is the same as before, except for the multiplicative constant.

Thus, the welfare result in Proposition 2, which obtained for the baseline model, also

holds in this market setting.

VIII.3 Omitted Proofs

VIII.3.1 Proof of Proposition 5

We can rewrite the solution as,

a0 + (p̃ε + pε)t = pt + P0

√
pε(pε − p̃ε)√
p̃ε(pε + p̃ε)

arctan

�
P0p̃ε + (pε + p̃ε)pt

P0

√
pεp̃ε

�
+

+
P0pε

pε + p̃ε
log

�
P 2
0 p̃ε + 2P0p̃εpt + (pε + p̃ε)p

2
t

�
.
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Given that pt goes to ∞, it follows that pt/t → (pε + p̃ε) as t goes to ∞. Now,

pt − (pε + p̃ε)t+
P0pε

pε + p̃ε
log(t2) = a0 − P0

√
pε(pε − p̃ε)√
p̃ε(pε + p̃ε)

arctan

�
P0p̃ε + (pε + p̃ε)pt

P0

√
pεp̃ε

�

− P0pε
pε + p̃ε

log
�
P 2
0 p̃ε/t

2 + 2P0p̃εpt/t
2 + (pε + p̃ε)(pt/t)

2
�
.

Note that, since arctan( · ) and pt/t are bounded, and since pt/t is bounded away from

zero, the right-hand side is indeed a bounded function.

VIII.3.2 Proof of Proposition 6

Let µt = x− cKt, and γt = pt/(pt + Pt), then

dµt = c
�
(1− γt)

�
x− X̂t

�
− µt

�
dt− c

dWt√
Pε

and, by Ito’s lemma

d
�
µ2
t

�
= 2µtdµt + dµtdµt = 2µtdµt +

c2

Pε
dt

⇒ d
�
µ2
t

�
= 2µtc (1− γt)

�
x− X̂t

�
dt− 2cµ2

tdt−
2µtc√
Pε

dWt +
c2

Pε
dt

⇒ µ2
t = µ2

0 +

� t

0

2µsc (1− γs)
�
x− X̂s

�
ds− 2c

� t

0

µ2
sds−

� t

0

2µsc√
Pε

dWs +
c2

Pε
t.

Taking expectations on both sides, we obtain

E0µ
2
t = E0µ

2
0 +

c2

Pε
t+ 2c

� t

0

(1− γs)E0µs

�
x− X̂s

�
ds− 2c

� t

0

E0µ
2
sds (VIII.5)

To compute E0

�
µt

�
x− X̂t

��
, note the following:

E0

�
µt

�
x− X̂t

��
= E0

�
(x− cKt)

�
x− X̂t

��

= E0

��
x− X̂t

��
x− X̂t

��
+ E0

��
X̂t − cKt

��
x− X̂t

��
,
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but, by definition of the conditional expectation X̂t, the residual x− X̂t is orthogonal

to X̂t and Kt. Therefore, the second term is zero and we find that

E0

�
µt

�
x− X̂t

��
= E0

��
x− X̂t

��
x− X̂t

��
=

1

Pt
.

Let µ̄t ≡ E0µ2
t . Then plugging the above finding back into (VIII.5), and keeping in

mind that γt = pt/(pt + Pt), we obtain

µ̄t = µ̄0 + 2c

� t

0

1

ps + Ps
ds− 2c

� t

0

µ̄sds+
c2

Pε
t .

Differentiating,

˙̄µt =
2c

pt + Pt
+

c2

Pε
− 2cµ̄t .

The above differential equation can now be solved for µ̄t:

µ̄t = e−2ctµ̄0 +

� t

0

e−2c(t−s)

�
2c

ps + Ps
+

c2

Pε

�
ds

= e−2ctµ̄0 +
c

2Pε

�
1− e−2ct

�
+

� t

0

e−2c(t−s) 2c

ps + Ps
ds.

Note that, limc→0 At = 0. The welfare function is, then,

W̃ =

� ∞

0

e−λt

�
− 1

pt + Pt
+ e−2ctµ̄0 +

� t

0

e2c(τ−t)

�
2c

pτ + Pτ
+

c2

Pε

�
dτ

�
dt (VIII.6)

Now switching the order of the two integrals, we find

� ∞

0

e−λt

� t

0

e2c(τ−t) 2c

pτ + Pτ
dτ dt =

� ∞

0

e−λτ 2c

r + 2c

1

pτ + Pτ
dτ.

Plugging back and integrating the other terms, we find:

W̃ = − λ

λ+ 2c

� ∞

0

e−λt

pt + Pt
dt+

A0

λ+ 2c
+

c

2Pε

2c

λ(λ+ 2c)
.

Now recall that µ̄0 = E0[(x− cK0)2] = E0[x2 − 2cK0x+ c2K2
0 ] = 1/P̄ + c2K2

0 , and we

are done.
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