Foreign Reserve Management at Zero Interest Rates

M. Amador¹ J. Bianchi² L. Bocola³ F. Perri⁴

¹Minneapolis Fed and U of Minnesota

²Minneapolis Fed

 $^{^3}$ Northwestern U

⁴Minneapolis Fed

Exchange rates, and foreign reserves accumulation

- A Central Bank sets an exchange rate policy that makes domestic assets attractive.
 - \Rightarrow Capital flows in
- Close to zero interest rates, the CB has a problem:
 - Domestic interest rates cannot fall to restore equilibrium
- One option:
 - Accumulate foreign assets and reverse the inflow
- In a world with limited arbitrage, this works
 - But may be costly

Our questions

- 1. How to invest the foreign reserves?
 - Doesn't matter, under perfect mobility (Backus Kehoe, 89)
 - Our answer: It does, under imperfect mobility

Our questions

- 1. How to invest the foreign reserves?
 - Doesn't matter, under perfect mobility (Backus Kehoe, 89)
 - Our answer: It does, under imperfect mobility

The CB has two goals:

- 1. Minimize the distortions imposed by ZLB
- 2. Minimize resource losses generated its FX interventions
 - Goals not necessarily aligned
 - Degree of openness controls the trade-off
- Different prescriptions for the assets that must be purchased

Our questions

- 2. What's the right measure of the losses?
 - Covered interest parity versus uncovered
- 3. Should foreign capital be restricted once inside borders?
 - In general, yes

Framework

- Two-period model (similar to Backus-Kehoe, 89)
 - Small open economy (government + households)
 - International Financial Market
 - International Arbitrageurs
- Time $t \in \{0,1\}$
- Uncertainty realized at t = 1, $s \in S \equiv \{s_1, ..., s_N\}$
- Probability $\pi(s) \in (0,1]$
- One good no production
- Law of one price

Asset markets: complete but segmented

International financial markets (IFM)

- Full set of Arrow-Debreu (real) securities:
 - Security s: 1 unit of consumption good in state s, 0 otherwise
 - Price q(s) in terms of goods at t = 0

Domestic financial market

- Money + full set of Arrow-Debreu (nominal) securities
 - Security s: 1 unit of money in state s, 0 otherwise
 - Price p(s) in terms of money at t = 0

Arbitrageurs

Can move resources to the SOE from IFM

Model: Small open economy

Households

• Endowment: $(y_0, \{y_1(s)\})$, transfers: $(T_0, \{T_1(s)\})$

$$\max_{c_0, \{c_1, a, f\}, m} \left\{ u_0(c_0) + \beta \sum_{s \in S} \pi(s) u_1(c_1(s)) + h\left(\frac{m}{e_0}\right) \right\}$$

$$y_0 + T_0 = c_0 + \sum_{s \in S} \left[q(s)f(s) + p(s)\frac{a(s)}{e_0} \right] + \frac{m}{e_0}$$

$$y_1(s) + T_1(s) + f(s) + \frac{a(s) + m}{e_1(s)} = c_1(s) \quad \forall s \in S$$

$$f(s) \ge 0 \quad \forall s \in S$$

 e_0 , $e_1(s)$: exchange rates at t=0 and t=1 f(s), a(s): holdings of foreign and domestic security s m: money holdings, \overline{x} : satiation point of h

Model: Small open economy

Government

- Exchange rates $\{e_0, e_1(s)\}$; money, M; amounts invested at home and abroad, A(s) and F(s); and transfers $(T_0, \{T_1(s)\})$.
- Budget constraint:

$$\sum_{s} p(s) \frac{A(s)}{e_0} + \sum_{s} q(s) F(s) + T_0 = \frac{M}{e_0}$$
$$\frac{M}{e_1(s)} + T_1(s) = \frac{A(s)}{e_1(s)} + F(s) \quad \forall s \in S$$

• In addition (only because of symmetry): $F(s) \ge 0 \quad \forall s \in S$ Describe gov't objective later on

Model: Foreign arbitrageurs

• Endowed with total resources \overline{w}

$$\max_{m^{\star}, \{a^{\star}, f^{\star}\}} \sum_{s \in S} q(s)c^{\star}(s)$$
subject to:
$$\overline{w} = \sum_{s \in S} p(s) \frac{a^{\star}(s)}{e_0} + \frac{m^{\star}}{e_0} + \sum_{s \in S} q(s)f^{\star}(s)$$

$$c^{\star}(s) = \frac{a^{\star}(s) + m^{\star}}{e_1(s)} + f^{\star}(s)$$

$$a^{\star}(s) \geq 0, m^{\star} \geq 0, f^{\star}(s) \geq 0$$

NOTE: It is the ability of arbitrageurs to buy domestic securities that allows the SOE to borrow internationally

Equilibrium definition

Take a given $(e_0, \{e_1(s)\})$

Equilibrium

HH's consumption, $(c_0, \{c_1(s)\})$, and asset positions, $(\{a(s), f(s)\}, m)$; arbitrageurs consumption, $\{c^*(s)\}$, and asset positions $(\{a^*(s), f^*(s)\}, m^*)$; government transfers $(T_0, \{T_1(s)\})$, asset $(\{A(s), F(s)\})$ and liabilities M; such that

- 1. HH and arbitrageurs maximize taking prices as given,
- 2. the government budget constraint holds, and
- 3. the domestic financial markets clear:

$$m + m^* = M$$
$$a(s) + a^*(s) + A(s) = 0 \quad \forall s \in S$$

Government objective

- Government desires to implement $(e_0, \{e_1(s)\})$ this is given.
- Chooses policy $(M, \{A(s), F(s)\})$ and $(T_0, \{T_1(s)\})$ as to implement the equilibrium that maximizes household welfare.
 - optimal equilibrium / optimal equilibrium allocation.

Government objective

- Government desires to implement $(e_0, \{e_1(s)\})$ this is given.
- Chooses policy $(M, \{A(s), F(s)\})$ and $(T_0, \{T_1(s)\})$ as to implement the equilibrium that maximizes household welfare.
 - optimal equilibrium / optimal equilibrium allocation.

For the rest of the talk: no income in the second period:

$$y_1(s) = 0$$
 for all s

• **Arbitrage return** for security *s*:

$$\kappa(s) \equiv rac{rac{e_0}{e_1 p(s)}}{rac{1}{q(s)}} - 1$$

• **Arbitrage return** for security *s*:

$$\kappa(s) \equiv rac{rac{e_0}{e_1 p(s)}}{rac{1}{q(s)}} - 1$$

• Using the HH's FOC

$$u_0'(c_0) = \beta \pi(s) \frac{e_0}{e_1(s)p(s)} u_1'(c_1(s))$$

• **Arbitrage return** for security *s*:

$$\kappa(s) \equiv rac{rac{e_0}{e_1 p(s)}}{rac{1}{q(s)}} - 1$$

• Using the HH's FOC

$$u'_0(c_0) = \beta \pi(s) \frac{e_0}{e_1(s)p(s)} u'_1(c_1(s))$$

we get

$$\kappa(s) = \frac{q(s)u_0'(c_0)}{\beta\pi(s)u_1'(c_1(s))} - 1$$

In any equilibrium $\kappa(s) \geq 0$ and f(s) = 0 if strict

Characterizing monetary equilibria: Resource constraint

Using the HH and government budget constraints, together with market clearing,

$$y_0-c_0-\sum_{s\in S}q(s)c_1(s)$$

Characterizing monetary equilibria: Resource constraint

Using the HH and government budget constraints, together with market clearing,

$$y_0 - c_0 - \sum_{s \in S} q(s)c_1(s)$$

$$- \underbrace{\left(\sum_{s \in S} \kappa(s) \frac{p(s)a^*(s)}{e_0} + \left[\sum_{s \in S} \frac{q(s)e_0}{e_1(s)} - 1\right] \frac{m^*}{e_0}\right)}_{\text{potential "arbitrage losses"} \equiv L} = 0$$

Characterizing monetary equilibria: Arbitrageurs optimization

Arbitrageurs problem ⇔ maximize "arbitrage losses" *L*

$$L = \max_{m^{\star}, \{a^{\star}(s)\}} \left\{ \sum_{s \in S} \kappa(s) \frac{p(s)a^{\star}(s)}{e_0} + \underbrace{\left[\sum_{s \in S} \frac{q(s)e_0}{e_1(s)} - 1\right]}_{\kappa^m} \frac{m^{\star}}{e_0} \right\}$$
s.t.
$$\frac{m^{\star}}{e_0} + \sum \frac{p(s)a^{\star}(s)}{e_0} \leq \overline{w}; \qquad m^{\star} \geq 0, a^{\star}(s) \geq 0 \ \forall s$$

Characterizing monetary equilibria: Arbitrageurs optimization

Arbitrageurs problem ⇔ maximize "arbitrage losses" *L*

$$L = \max_{m^{\star}, \{a^{\star}(s)\}} \left\{ \sum_{s \in S} \kappa(s) \frac{p(s)a^{\star}(s)}{e_0} + \underbrace{\left[\sum_{s \in S} \frac{q(s)e_0}{e_1(s)} - 1\right]}_{\kappa^m} \frac{m^{\star}}{e_0} \right\}$$
s.t.
$$\frac{m^{\star}}{e_0} + \sum_{s \in S} \frac{p(s)a^{\star}(s)}{e_0} \leq \overline{w}; \qquad m^{\star} \geq 0, a^{\star}(s) \geq 0 \ \forall s$$

- Money is weakly dominated $\Rightarrow \kappa(s) \geq \kappa^m$ for some s.
- Arbitrageurs invest in the highest return:

$$L = \overline{\kappa} \overline{w}$$
 where $\overline{\kappa} \equiv \max_{s} \{ \kappa(s) \} \ge \kappa^m$

• Invest in money only if $\kappa(s) = \kappa^m$ for all s

Characterizing monetary equilibria: Implementability

Result (Implementation). An allocation $(c_0, \{c_1(s)\}, m)$ is part of an equilibrium if and only if

$$y_0 - c_0 - \sum_{s \in S} q(s)c_1(s) - \overline{\kappa w} = 0$$
 (IRC)
$$h'\left(\frac{m}{e_0}\right) \frac{1}{u_0'(c_0)} = 1 - \sum_{\substack{s \in S}} \frac{q(s)e_0}{(1 + \kappa(s))e_1(s)}$$
 (MD)
$$\kappa(s) \ge 0 \ \forall s$$

$$\overline{\kappa} = \max_{s} \{\kappa(s)\}$$

Goal: Find the best allocation (in terms of HH's welfare)

The arbitrage return on money

Arbitrageur with one unit of the consumption good

• Invest it in domestic money:

Cost today: 1 Benefit tomorrow: $\left\{\frac{e_0}{e_1(s)}\right\}$

The arbitrage return on money

Arbitrageur with one unit of the consumption good

• Invest it in domestic money:

Cost today: 1 Benefit tomorrow:
$$\left\{\frac{e_0}{e_1(s)}\right\}$$

• Replicate that payoff abroad:

Cost today:
$$\sum_{s} \frac{q(s)e_0}{e_1(s)}$$
 Benefit tomorrow: $\left\{\frac{e_0}{e_1(s)}\right\}$

The arbitrage return on money

Arbitrageur with one unit of the consumption good

• Invest it in domestic money:

Cost today: 1 Benefit tomorrow:
$$\left\{\frac{e_0}{e_1(s)}\right\}$$

• Replicate that payoff abroad:

Cost today:
$$\sum_{s} \frac{q(s)e_0}{e_1(s)}$$
 Benefit tomorrow: $\left\{\frac{e_0}{e_1(s)}\right\}$

If
$$\sum_s rac{q(s)e_0}{e_1(s)} > 1 \Rightarrow$$

- Money (strictly) dominates foreign assets
- Return on money is a lower bound for the domestic bond
 - \Rightarrow Real rates of return cannot be equalized across regions

Optimal reserves: When ZLB is not binding

Case 1:
$$\sum_{s \in S} \frac{q(s)e_0}{e_1(s)} < 1$$
.

• In any equilibrium, ZLB is never binding.

Optimal reserves: When ZLB is not binding

Case 1:
$$\sum_{s \in S} \frac{q(s)e_0}{e_1(s)} < 1$$
.

• In any equilibrium, ZLB is never binding.

For case 1, the optimal allocation has $\kappa(s) = 0$ for all s.

- Possible implementation: F(s) = 0 for all s.
 - Backus-Kehoe (89) irrelevance of reserves (at the margin).

Optimal reserves: When ZLB binds

Case 2:
$$\sum_{s \in S} \frac{q(s)e_0}{e_1(s)} > 1$$
.

Optimal reserves: When ZLB binds

Case 2:
$$\sum_{s \in S} \frac{q(s)e_0}{e_1(s)} > 1$$
.

$$\Rightarrow \kappa(s) > 0$$
 for some s .

Interlude 1: Reserves portfolio and arbitrage returns

• From the definition of $\kappa(s)$:

$$\kappa(s) = \frac{q(s)u'_0(c_0)}{\beta\pi(s)u'_1(c_1(s))} - 1$$

- How to increase $\kappa(s)$?
- CB accumulates assets that pay in state s
 - tilting consumption towards future
 - intervention large enough that private sector cannot undo it

The Central Bank's problem

$$V = \max_{(c_0,\{c_1(s)\},m)} \left\{ u_0(c_0) + \beta \sum_s \pi(s) u_1(c_1(s)) + h\left(\frac{m}{e_0}\right) \right\}$$
 subject to
$$y_0 - c_0 - \sum_s q(s) c_1(s) = \bar{\kappa} \bar{w} \qquad (IRC)$$

$$h'\left(\frac{m}{e_0}\right) \frac{1}{u_0'(c_0)} = 1 - \sum_s \frac{q(s) e_0}{(1 + \kappa(s)) e_1(s)} \qquad (MD)$$

$$\bar{\kappa} = \max_s \{\kappa(s)\} \qquad (\bar{\kappa})$$

$$\kappa(s) = \frac{q(s) u_0'(c_0)}{\beta \pi(s) u_0'(c_1(s))} - 1 \ge 0 \ \forall s \qquad (\kappa(s))$$

The Central Bank's problem: A simplification

$$V = \max_{ar{\kappa} \geq \kappa^m} \tilde{V}(ar{\kappa})$$

where
$$\tilde{V}(\bar{\kappa}) \equiv \max_{(c_0,\{c_1(s)\})} \left\{ u_0(c_0) + \beta \sum_{s \in S} \pi(s) u_1(c_1(s)) + h(\bar{\kappa}) \right\}$$
 subject to $y_0 - c_0 - \sum_{s \in S} q(s) c_1(s) = \bar{\kappa} \bar{w}$ (IRC) $0 \leq u_0'(c_0) - \sum_{s \in S} \frac{\beta \pi(s) e_0}{e_1(s)} u_1'(c_1(s))$ (ZLB) $0 \geq u_0'(c_0) - (1 + \bar{\kappa}) \frac{\beta \pi(s)}{a(s)} u_1'(c_1(s)) \ \forall s \ (\bar{\kappa})$

Where are we going?

Two cases

Financially close

• $\overline{w} = 0$

Financially open

• \overline{w} is large

Financially closed economy: $\overline{w} = 0$

$$V \equiv \max_{(c_0, \{c_1(s)\})} \left\{ u_0(c_0) + \beta \sum_{s \in S} \pi(s) u_1(c_1(s)) + h(\bar{x}) \right\}$$
subject to
$$y_0 - c_0 - \sum_{s \in S} q(s) c_1(s) = 0 \qquad \text{(IRC)}$$

$$0 \le u_0'(c_0) - \sum_{s \in S} \frac{\beta \pi(s) e_0}{e_1(s)} u_1'(c_1(s)) \qquad \text{(ZLB)}$$

$$0 \ge u_0'(c_0) - (1 + \bar{\kappa}) \frac{\beta \pi(s)}{q(s)} u_1'(c_1(s)) \quad \forall s$$

Financially closed economy: $\overline{w} = 0$

Result. $\exists \lambda > 0$ s.t.

•
$$1 + \kappa(s) = \frac{q(s)u_0'(c_0)}{\beta\pi(s)u_1'(c_1(s))} = \frac{1 - \lambda \frac{e_0}{e_1(s)} \frac{u_1''(c_1(s))}{u_1'(c_1(s))}}{1 + \lambda \frac{u_0''(c_0)}{u_0'(c_0)}} > 1 \text{ for all } s$$

• the nominal interest rate is zero.

Financially closed economy: $\overline{w} = 0$

Result. $\exists \lambda > 0$ s.t.

•
$$1 + \kappa(s) = \frac{q(s)u_0'(c_0)}{\beta\pi(s)u_1'(c_1(s))} = \frac{1 - \lambda \frac{e_0}{e_1(s)} \frac{u_1'(c_1(s))}{u_1'(c_1(s))}}{1 + \lambda \frac{u_0''(c_0)}{u_0'(c_0)}} > 1 \text{ for all } s$$

• the nominal interest rate is zero.

Distort all returns but NOT necessarily equalize them.

Result. Suppose that (i) $\pi(s)/q(s)$ is constant and that (ii) u_1 is DARA. Then, $\kappa(s)$ is strictly decreasing in $e_1(s)$.

Result. Suppose that (i) $\pi(s)/q(s)$ is constant and that (ii) u_1 is DARA. Then, $\kappa(s)$ is strictly decreasing in $e_1(s)$.

$$c_1(s) = f(s) + F(s) - \frac{m^* + a^*(s)}{e_1(s)}$$

Result. Suppose that (i) $\pi(s)/q(s)$ is constant and that (ii) u_1 is DARA. Then, $\kappa(s)$ is strictly decreasing in $e_1(s)$.

$$c_1(s) = + F(s) - \frac{m^* + a^*(s)}{e_1(s)}$$

Result. Suppose that (i) $\pi(s)/q(s)$ is constant and that (ii) u_1 is DARA. Then, $\kappa(s)$ is strictly decreasing in $e_1(s)$.

$$c_1(s) = +F(s)$$

CB reserve policy is pinned down.

F(s) is strictly decreasing in $e_1(s)$.

Result. CB holds assets that pay when currency appreciates.

Goal is to relax ZLB constraint. Fisher equation:

$$1 \geq \sum \left(\underbrace{rac{eta\pi(s)u_1'(c_1(s))}{u_0'(c_0)}}_{rac{1}{1+r}} imes \underbrace{rac{e_0}{e_1(s)}}_{rac{1}{1+\pi}}
ight)$$

Goal is to relax ZLB constraint. Fisher equation:

$$1 \geq \sum \left(\underbrace{rac{eta\pi(s)u_1'(c_1(s))}{u_0'(c_0)}}_{rac{1}{1+r}} imes \underbrace{rac{e_0}{e_1(s)}}_{rac{1}{1+\pi}}
ight)$$

Distort more states where appreciation is bigger

- Recall arbitrage losses: $L = \overline{\kappa w} = \max_s \{\kappa(s)\}\overline{w}$
- Consider the following problem:

$$\min_{\{\kappa(s)\}} \left\{ \max_{s} \{\kappa(s)\} \right\} \text{ subject to:}$$

$$0 \leq 1 - \sum_{s} \frac{q(s)e_0}{(1 + \kappa(s))e_1(s)}$$

$$0 \leq \kappa(s) \quad \forall s$$
 (ZLB)

- Solution: $\kappa(s) = \kappa^m$ for all s
- Only allocation were foreigners willing to hold money

Assumption:

ullet $u_0(c_0)=c_0$ and that $u_1(c_1)$ is in DARA class

Assumption:

ullet $u_0(c_0)=c_0$ and that $u_1(c_1)$ is in DARA class

Result. For \overline{w} large enough, the $\kappa(s) = \bar{\kappa}$ for all s is optimal

Proof $\exists W$ s.t for all $\bar{w} > W$, $\tilde{V}(\bar{\kappa}) \leq 0$ for all $\bar{\kappa} \geq \kappa^m$

• Optimal F(s), A(s), M and T_0 , $T_1(s)$?

- Optimal F(s), A(s), M and T_0 , $T_1(s)$?
- $M \ge e_0 \bar{x}$ to guarantee enough money satiation
- Any budget feasible A(s), T_0 , $T_1(s)$

- Optimal F(s), A(s), M and T_0 , $T_1(s)$?
- $M \ge e_0 \bar{x}$ to guarantee enough money satiation
- Any budget feasible A(s), T_0 , $T_1(s)$
- F(s) needs to satisfy:

$$\sum_{s} q(s)F(s) = y_0 - c_0^e + \overline{w} > 0$$
$$F(s) \ge c_1^e(s)$$

Result. If $q(s)/\pi(s)$ is constant $\Rightarrow c_1^e$ constant \Rightarrow invest in safe (real) assets.

Summary so far

- Under imperfect international arbitrage:
 - Reserve portfolio matters
 - Trade-off: ZLB vs resource losses
 - Optimality hinges on size of capital flows
 - Open Invest in safe assets make sure foreigners holds m
 - Closed Invest in assets that pay when currency appreciates

Summary so far

- Under imperfect international arbitrage:
 - Reserve portfolio matters
 - Trade-off: ZLB vs resource losses
 - Optimality hinges on size of capital flows
 - Open Invest in safe assets make sure foreigners holds m
 - Closed Invest in assets that pay when currency appreciates

- Next: how to measure the losses?
 - Rate of return differentials of assets in different currencies
 - Uncovered Interest Parity or Covered Interest Parity?

$$1 + \kappa^m = \sum_{s \in S} \frac{q(s)e_0}{e_1(s)}$$

$$1 + \kappa^m = \sum_{s \in S} \frac{q(s)e_0}{e_1(s)} = \sum_{s \in S} \pi(s) \frac{q(s)}{\pi(s)} \frac{e_0}{e_1(s)}$$

$$\begin{aligned} 1 + \kappa^m &= \sum_{s \in S} \frac{q(s)e_0}{e_1(s)} = \sum_{s \in S} \pi(s) \frac{q(s)}{\pi(s)} \frac{e_0}{e_1(s)} \\ 1 + \kappa^m &= \mathbb{E}\left[\frac{q(s)}{\pi(s)}\right] \mathbb{E}\left[\frac{e_0}{e_1(s)}\right] + Cov\left[\frac{q(s)}{\pi(s)}, \frac{e_0}{e_1(s)}\right] \end{aligned}$$

$$1 + \kappa^m = \sum_{s \in S} \frac{q(s)e_0}{e_1(s)} = \sum_{s \in S} \pi(s) \frac{q(s)}{\pi(s)} \frac{e_0}{e_1(s)}$$

$$1 + \kappa^m = \mathbb{E}\left[\frac{q(s)}{\pi(s)}\right] \mathbb{E}\left[\frac{e_0}{e_1(s)}\right] + Cov\left[\frac{q(s)}{\pi(s)}, \frac{e_0}{e_1(s)}\right]$$

$$\kappa^m = \underbrace{\frac{1 + i(=0)}{1 + i^*} \mathbb{E}\left[\frac{e_0}{e_1(s)}\right] - 1}_{\text{UIP gap}} + \underbrace{Cov\left[\frac{q(s)}{\pi(s)}, \frac{e_0}{e_1(s)}\right]}_{\text{risk premium}}$$

• From the definition of κ^m

$$1 + \kappa^m = \sum_{s \in S} \frac{q(s)e_0}{e_1(s)} = \sum_{s \in S} \pi(s) \frac{q(s)}{\pi(s)} \frac{e_0}{e_1(s)}$$

$$1 + \kappa^m = \mathbb{E}\left[\frac{q(s)}{\pi(s)}\right] \mathbb{E}\left[\frac{e_0}{e_1(s)}\right] + Cov\left[\frac{q(s)}{\pi(s)}, \frac{e_0}{e_1(s)}\right]$$

$$\kappa^m = \underbrace{\frac{1 + i(=0)}{1 + i^*} \mathbb{E}\left[\frac{e_0}{e_1(s)}\right] - 1}_{\text{UIP gap}} + \underbrace{Cov\left[\frac{q(s)}{\pi(s)}, \frac{e_0}{e_1(s)}\right]}_{\text{risk premium}}$$

ullet UIP gap not enough to identify κ^m

• You have one unit of currency at t = 1. In IFM:

$$\sum q(s) \left[\frac{1}{e_1(s)} - \frac{1}{f} \right] = 0$$

where f is the forward exchange rate.

• You have one unit of currency at t = 1. In IFM:

$$\sum q(s) \left[\frac{1}{e_1(s)} - \frac{1}{f} \right] = 0 \implies f = \frac{\sum q(s)}{\sum \frac{q(s)}{e_1(s)}}$$

where f is the forward exchange rate.

• You have one unit of currency at t = 1. In IFM:

$$\sum q(s) \left[\frac{1}{e_1(s)} - \frac{1}{f} \right] = 0 \ \Rightarrow f = \frac{\sum q(s)}{\sum \frac{q(s)}{e_1(s)}}$$

where f is the forward exchange rate.

$$1+\kappa^m=\sum q(s)\frac{e_0}{e_1(s)}$$

• You have one unit of currency at t = 1. In IFM:

$$\sum q(s) \left[\frac{1}{e_1(s)} - \frac{1}{f} \right] = 0 \ \Rightarrow f = \frac{\sum q(s)}{\sum \frac{q(s)}{e_1(s)}}$$

where f is the forward exchange rate.

$$1+\kappa^m=\sum q(s)rac{e_0}{e_1(s)}=\sum q(s) imesrac{\sumrac{q(s)}{e_1(s)}}{\sum q(s)}e_0$$

• You have one unit of currency at t = 1. In IFM:

$$\sum q(s) \left[\frac{1}{e_1(s)} - \frac{1}{f} \right] = 0 \ \Rightarrow f = \frac{\sum q(s)}{\sum \frac{q(s)}{e_1(s)}}$$

where f is the forward exchange rate.

$$1 + \kappa^m = \sum q(s) \frac{e_0}{e_1(s)} = \sum q(s) \times \frac{\sum \frac{q(s)}{e_1(s)}}{\sum q(s)} e_0$$

$$\kappa^m = \underbrace{\frac{1 + i(=0)}{1 + i^*} \frac{e_0}{f} - 1}_{\text{CIP gap}}$$

• You have one unit of currency at t = 1. In IFM:

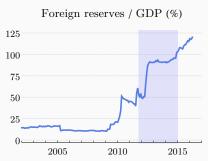
$$\sum q(s) \left[\frac{1}{e_1(s)} - \frac{1}{f} \right] = 0 \ \Rightarrow f = \frac{\sum q(s)}{\sum \frac{q(s)}{e_1(s)}}$$

where f is the forward exchange rate.

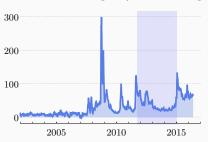
$$1 + \kappa^m = \sum q(s) \frac{e_0}{e_1(s)} = \sum q(s) \times \frac{\sum \frac{q(s)}{e_1(s)}}{\sum q(s)} e_0$$

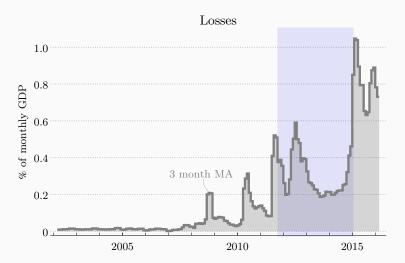
$$\kappa^m = \underbrace{\frac{1 + i(=0)}{1 + i^*} \frac{e_0}{f} - 1}_{\text{CIP gap}}$$

- CIP gap equals κ_e (lower bound on losses)
- Large CIP deviations (Du, Tepper and Verdehaln, 2016)



1.6





Arbitrageurs and domestic leverage

• Suppose now that $a^*(s) \ge -e_1(s)\underline{a}^*(s)$ for $\underline{a}^*(s) > 0$.

$$\Pi = \overline{\kappa w} + \sum_{s} (\overline{\kappa} - \kappa(s)) \frac{p(s)e_1(s)}{e_0} \underline{a}^*(s)$$
$$= \overline{\kappa w} + \sum_{s} q(s) \left(\frac{\overline{\kappa} - \kappa(s)}{1 + \kappa(s)} \right) \underline{a}^*(s)$$

Arbitrageurs and domestic leverage

• Suppose now that $a^*(s) \ge -e_1(s)\underline{a}^*(s)$ for $\underline{a}^*(s) > 0$.

$$\Pi = \overline{\kappa w} + \sum_{s} (\overline{\kappa} - \kappa(s)) \frac{p(s)e_1(s)}{e_0} \underline{a}^*(s)$$
$$= \overline{\kappa w} + \sum_{s} q(s) \left(\frac{\overline{\kappa} - \kappa(s)}{1 + \kappa(s)} \right) \underline{a}^*(s)$$

- "Equal gaps" allocation, unchanged
 - if it was optimal before, remains optimal now

Arbitrageurs and domestic leverage

• Suppose now that $a^*(s) \ge -e_1(s)\underline{a}^*(s)$ for $\underline{a}^*(s) > 0$.

$$\Pi = \overline{\kappa w} + \sum_{s} (\overline{\kappa} - \kappa(s)) \frac{p(s)e_1(s)}{e_0} \underline{a}^*(s)$$
$$= \overline{\kappa w} + \sum_{s} q(s) \left(\frac{\overline{\kappa} - \kappa(s)}{1 + \kappa(s)} \right) \underline{a}^*(s)$$

- "Equal gaps" allocation, unchanged
 - if it was optimal before, remains optimal now
- Deviating from "equal gaps" creates additional losses even if $\overline{w} = 0!$.
- Role for policy

Conclusion

- Optimal porfolio hinges on degree of openness
 - Relatively closed economies:
 - Invest in foreign assets that pay when the currency appreciates
 - Relatively open economies:
 - Make sure that foreign investors demand domestic currency
 - Invest in safe assets
- CIP deviation lower bound on potential losses
- Ability to leverage makes thing worse for the CB
- Missing things:
 - No carry-trade complete mkts (?)
 - · Implications for a closed economy
 - Capital controls

Covered interest parity deviations (cross-section)

