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Mark Aguiar and Manuel Amador

This document contains the online appendices for “Growth in the Shadow of Expro-
priation.” Section I contains the proofs of all propositions. Section II extends the bench-
mark model to incorporate exogenous productivity growth. Section III considers the case
in which the capitalists are also political insiders and therefore enter the incumbent’s util-
ity function. Section IV considers the near sufficiency of the ratio (1− δ)/θ to characterize
the speed of convergence in the concave utility case.

I Proofs

This appendix presents proofs of statements made in the body of the paper. We begin
with Proposition 1, postponing proof of lemma 1 until after the proof of lemma 2. The
proof of proposition 3 is contained in the final subsection of the appendix, in which we
discuss the dynamics with concave utility more generally.

For convenience, we restate the problem (P):

V(b0) = max
{ct,kt}

∞

∑
t=0

βtu(ct) (AP)

subject to:

b0 ≤
∞

∑
t=0

R−t ( f (kt)− (r + d)kt − ct) , (A12)

W(kt) ≤
∞

∑
s=t

βs−tδs−tθu(cs) +
∞

∑
s=t

βs−t(1− δs−t)u(cs), ∀t (A13)

k ≤ kt, ∀t (A14)
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Let µ0 be the multiplier on the budget constraint (A12), λt(R−tµ0/θ) be the multiplier on
the sequence of constraints on participation (A13) and φtR−t be the multiplier on (A14).

For ct, kt to be an optimal allocation, there exist non-negative multipliers such that: (i)
the following first order conditions hold:

1
u′(ct)

=
(βR)t

µ0
+

t

∑
s=0

(βR)s (δs(θ − 1) + 1)
λt−s

θ
(A15)

λt

θ
W ′(kt) = f ′(kt)− (r + d) + φt, ∀t ≥ 0; (A16)

(ii) the constraints (A12)-(A14) hold; and (iii) the associated complementary slackness
conditions hold. Given the convexity of the problem (Assumption 2), these conditions
are also sufficient.

Proof of Proposition 1

To prove the proposition, suppose that kt does not converge to k∗. Define Tε = {t|kt <

k∗ − ε}. It follows that for some ε > 0, Tε has infinite members. Then from (A15):

1
u′(ct)

=
1
µ0

+
t

∑
s=0

(
δt−s(θ − 1) + 1

) λs

θ
≥ 1

µ0
+ ∑

s∈Tε,s≤t

λs

θ
≥ 1

µ0
+ ∑

s∈Tε,s≤t
Cε

where Cε ≡ ( f ′(k? − ε) − (r + d))/(W ′(k? − ε)/θ) > 0, and the inequalities reflect
λs, φs ≥ 0 for all s and λs ≥ Cε for s ∈ Tε. It follows then that 1/u′(ct) diverges to
infinity, and thus u(ct) converges to its maximum. But this implies that the participation
constraints will stop binding at some finite t0, which leads to λs that are zero for all s > t0,
a contradiction.

Proof of Proposition 2

From (17) evaluated at t, we have:

1 =
βtRt

µ0
+

t

∑
s=0

βsRs λt−s

θ
+

t

∑
s=0

βsRsδs(θ − 1)
λt−s

θ
∀t ≥ 0. (A17)
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Evaluated at t = 0, we have λ0 = 1− 1/µ0. At t = 1, we have λ1 = 1− βR + βR(1−
δ)(1− 1/θ)λ0. For t > 1, we let L represent the lag operator and write (A17) as

1 =
βtRt

µ0
+

1
θ

t

∑
s=0

βsRs (1 + δs(θ − 1)) Lsλt

=
βtRt

µ0
+

1
θ

(
1

1− βRL
+

θ − 1
1− βRδL

)
λt

=
βtRt

µ0
+

1
θ

(
1− βRδL + (θ − 1)(1− βRL)

(1− βRL)(1− βRδL)

)
λt,

where the step from the first to the second line uses the fact that λt = 0 for t < 0. Multi-
plying through and rearranging yields equation (18) from the text:

λt+1 = (1− βR)(1− βRδ) + βR
(

1− 1− δ

θ

)
λt ∀t ≥ 1.

The steady state value can be computed in the usual way. Given that the slope of (18) is
positive and less than one, convergence and monotonicity follow.

Proof of Corollary 1

Proposition 2 characterized the dynamics of λt. One can then use the first order condition
for capital to derive the associated dynamics for kt. For any given value of λt, define
K(λt) to be the solution to:

λt =
f ′(K(λt))− (r + d)

W ′(K(λt))/θ
=

f ′(K(λt))− (r + d)
c′(K(λt))

.

The convexity assumption (Assumption 2) guarantees that the above has a unique solu-
tion, and that K(λt) is strictly decreasing in λt. Now, let λ be such that K(λ) = k. Then
the optimal path for kt will be:

kt =

K(λt) ; for λt < λ

k ; otherwise
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Given that λt is monotone, this implies that the path for kt will also be monotone. Define
θ to be the value such that:

λ =
f ′(k)− (r + d)

c′(k)
=

θ(1− δβR)(1− βR)
θ(1− βR) + βR(1− δ)

.

Hence, the long run level of capital will be:

k∞ =

K(λ∞) ; for θ < θ

k ; otherwise

This proves the first part of Corollary 1. For the second part, note that higher debt
implies a (weakly) higher multiplier µ0, and a higher λ0 = 1− 1/µ0. Given that λ1 and
λt are monotonic in previous values, it follows that the entire path of λt increases with µ0

and debt. That is, a higher level of debt leads to a lower level of capital at each point in
time.

Proof of Lemma 2

Using the definitions, we have

Vt = ut + βVt+1

Wt = θut + βδWt+1 + β(1− δ)Vt+1.

Eliminating ut from the above and re-arranging:

θ

(
Vt − β

(
1− 1− δ

θ

)
Vt+1

)
= Wt − βδWt+1

θ

(
1− β

(
1− 1− δ

θ

)
F
)

Vt = (1− βδF)Wt,
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where F is the forward operator. Solving for Vt and eliminating explosive solutions:

θVt =

 1− βδF

1− β
(

1− 1−δ
θ

)
F

Wt

= Wt + β(1− δ)

(
1− 1

θ

) ∞

∑
i=0

βi
(

1− 1− δ

θ

)i
Wt+1+i.

Dividing through by θ yields the expression in the lemma.

Proof of Lemma 1

Define W(k) to be the incumbent’s value function if it deviates given capital k. We can
write this as

W(k) = θu(c(k)) + βδW + β(1− δ)V, (I.1)

where W is the continuation value under the punishment if the incumbent retains power
next period, and V is the continuation value if it loses power. We normalize t = 0 to be
the time of the deviation, so we have W = W1 and V = V1. From Lemma 2, we have:

θV = θV1 = W1 + β(1− δ)

(
1− 1

θ

) ∞

∑
i=0

βi
(

1− 1− δ

θ

)i
W1+i.

As the punishment must be self-enforcing, we have Wt ≥ θu(c(kt)) + βδW + β(1− δ)V,
at each t. Note that a second deviation is punished in the same way as the first. The
fact that W(k) is the worst possible punishment implies that this maximizes the set of
possible self-enforcing allocations, from which we are selecting the one with minimum
utility. Substituting in the participation constraint in the above expression yields:

θV ≥ θu(c(k1)) + βδW + β(1− δ)V

+ β(1− δ)

(
1− 1

θ

) ∞

∑
i=0

βi
(

1− 1− δ

θ

)i

(θu(c(k1+i)) + βδW + β(1− δ)V)

≥

 1− βδ

1− β
(

1− 1−δ
θ

)
 (θu(c(k)) + βδW + β(1− δ)V) ,
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where the last inequality uses the fact that kt ≥ k, for all t. Rearranging, we have

V ≥ (1− βδ) (u(c(k)) + βδW)

θ(1− β) + β2δ(1− δ)
. (I.2)

Recall that W1 = W. Participation at t = 1 requires W1 ≥ θu(c(k1)) + βδW + β(1− δ)V,
or using the fact that k1 ≥ k:

W ≥ θu(c(k)) + βδW + β(1− δ)V.

Substituting (I.2) in for V and rearranging yields:

W ≥
(

θ − 1
1− βδ

+
1

1− β

)
u(c(k)).

Substituting back into (I.2), we have

V ≥ u(c(k))
1− β

.

The left hand sides of these last two inequalities are the government’s and private agent’s
utility, respectively, from the Nash equilibrium repeated ad infinitum. As repeated Nash
is a self enforcing equilibrium and bounds from below the punishment payoff, it is the
self-enforcing equilibrium that yields the lowest utility for the deviating government.

Proof of Proposition 4

The proof of this proposition follows directly from Lemma 2, the fact that kt is monotone,
and that W(k) is an increasing function of k.

Proof of Corollary 2

Suppose that kt is increasing. Let Bt = ∑∞
s=t Rs−t( f (ks)− (r + d)ks − cs) denote the stock

of debt outstanding in period t. Suppose, to generate a contradiction, that BT+1 > BT

for some T ≥ 1. Let {ct, kt} denote the equilibrium allocation. Now consider the al-
ternative allocation: c̃t = ct and k̃t = kt for t < T, and c̃t = ct+1 and k̃t = kt+1

for t ≥ T. That is, starting with period T, we move up the allocation one period.
As Ṽ0 − V0 = βT(ṼT − VT) = βT(VT+1 − VT) > 0, the objective function has in-
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creased and where the last inequality follows from the monotonicity of Vt. Similarly,
B̃0 − B0 = R−T(B̃T − BT) = R−T(BT+1 − BT) > 0, the budget constraint is relaxed,
where the last inequality follows from the premise BT+1 > BT. For t ≥ T, we have
W̃t = Wt+1 ≥ W(kt+1) = W(k̃t), so participation holds for period T and after. For t < T,
note that Wt = ∑T−1

s=t βs−t [δs−t(θ − 1) + 1
]

us + βTδTWT + βT(1− δTt)VT+1. As W̃T > WT

and ṼT > VT, we have W̃t > Wt for all t < T. As k̃t = kt for t < T, our new allocation
satisfies the participation constraints of the governments along the path. Therefore, we
have found a feasible allocation that is a strict improvement, a contradiction of optimality.
A similar argument works for a decreasing path of kt.

Proof of Proposition 5

By construction, the budget constraint implications of both policies are the same. More-
over, the deviation utility is unchanged for debt relief, while strictly higher for uncon-
ditional aid. Therefore, debt relief can be viewed as a relaxed version of the prob-
lem with unconditional aid, and so weakly dominates. If the participation constraint
binds in the solution with debt relief, this allocation is unattainable with unconditional
aid. Given the convexity of the problem, welfare will be strictly higher with debt re-
lief in this case. The second part of the proposition follows from a simple change of
variable in the original problem (P). Let {kt, ct}∞

t=0 denote the efficient allocation with-
out aid, and {k̃t, c̃t}∞

t=0 denote the efficient allocation given a sequence of uncondi-
tional aid payments {yt}. Note that the resource constraint in the presence of aid is
b0 ≤ ∑t R−t ( f (k̃t)− (r + d)k̃t + yt − c̃t

)
. Define ĉt = c̃t − yt, so that the resource con-

straint can now be written b0 ≤
∑t R−t ( f (k̃t)− (r + d)k̃t − ĉt

)
, which is observationally equivalent to the non-aid prob-

lem. As the participation constraint is linear in c̃t and unconditional aid, we can subtract
the discounted stream of yt from both sides replace c̃t − yt with ĉt, thereby eliminating
yt from the participation constraints. The objective function is also linear in c̃t, so we can
replace ∑ βt c̃t with ∑ βt ĉt without changing the solution to the problem. With this change
of variable, the problem with aid can be stated in terms of ĉt, without the presence of yt.
Therefore, the solution {ĉt, k̃t}∞

t=0 will coincide with the non-aid allocation {ct, kt}. That
is k̃t = kt and ĉt = ct for all t. From the definition of ĉt, we therefore have c̃t = ct + yt, as
stated in the proposition.
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Analysis of Nonlinear Dynamics and Proof of Proposition 3

We now characterize dynamics when utility is concave. For the case of δ = 0, we can
depict the dynamics in a two dimensional phase diagram. We then discuss a linearized
system for the case of general δ < 1. For concave utility, we impose the Inada conditions:
limc→0 u′(c) = ∞ and limc→∞ u′(c) = 0.

The non-linear system for general δ is:

Wt = θut + βδWt+1 + β(1− δ)Vt+1

Vt = ut + βVt+1

c′(ut) =
(βR)t

µ0
+

t

∑
s=0

(βR)s λt−s

θ
+

t

∑
s=0

(βR)sδs(θ − 1)
λt−s

θ

λt =
f ′(kt)− (r + d)

W ′(kt)/θ
= H(kt),

where c(u) is the inverse utility function. For convenience, we assume that the constraint
kt ≥ k is not binding, a point we discuss below. A sequence {ut, kt, Vt, Wt, λt} plus a
multiplier µ0 that satisfies this system, the constraints (A12)–(A13) with the right hand
side of (A13) replaced by Wt, complementary slackness, plus the boundary conditions
lims→∞ βsVt+s = 0 and lims→∞ βsWt+s = 0, will be an optimal allocation. To see this,
note that the latter two equations are the same as (A15) and (A16). The solutions to the
first two difference equations that satisfy the boundary conditions yield the correct value
function for incumbent utility, so constraint (A13) is equivalent to W(kt) ≤Wt.

It will be convenient to introduce the following notation:

Λt ≡
(βR)t

µ0
+ βR

t−1

∑
s=0

(βR)s λt−1−s

θ

Φt ≡ βRδ
t−1

∑
s=0

(βR)sδs(θ − 1)
λt−s

θ
.

With this, we can write the first order condition for consumption as

c′(ut) = Λt + Φt + λt.
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We have Λ0 = 1/µ0 andΦ0 = 0, with

Λt+1 = βR
(

Λt +
λt

θ

)
(I.3)

Φt+1 = βRδ

(
Φt + (θ − 1)

λt

θ

)
. (I.4)

Letting a prime denote next period’s value, we can write the dynamic system the
characterizes the equilibrium allocation as the set of first order difference equations:

−W ′ =
θ − 1 + δ

βδ
u +

1− δ

βδ
V − 1

βδ
W (D)

V′ =
1
β

V − 1
β

u

Λ′ = βR
(

Λ +
λ

θ

)
Φ′ = βRδ

(
Φ + (θ − 1)

λ

θ

)
;

the first order conditions::

c′(u) = Λ + Φ + λ

λ = H(k);

the complementary slackness condition for λ ≥ 0:1

λ(W −W(k)) = 0;

and the boundary conditions

lim
s→∞

βsVt+s = 0

lim
s→∞

βsWt+s = 0.

For convenience, we invert the first order condition c′(u) = Λ + Φ + λ and introduce the

1We omit the slackness condition on the budget constraint, as this constraint will always hold with
equality at an optimal allocation.
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function U : R+ → [u, ū]:

u = U(Λ + Φ + λ) = c′−1(Λ + Φ + λ). (I.5)

We can state the following, which is part (i) of Proposition 3:

Lemma 1. When βR < 1, there is a unique steady state for the system (D) for which k∞ < k?.
When βR = 1, there is a continuum of possible steady states which all have k∞ = k?.

Proof. Equations (D) imply:

λ∞ =
(1− βR)θ

βR
Λ∞

Φ∞ =
βRδ(θ − 1)
(1− βRδ)θ

λ∞

W∞ =

(
θ − 1

1− βδ
+

1
1− β

)
u∞

V∞ =
u∞

1− β
.

Case (i) βR < 1: Suppose, to generate a contradiction, that λ∞ = 0, so W∞ ≥W(k?). From
(AI.3)-(AI.4), we have Λ, Φ → 0. The first order condition for u implies that c′(u∞) =

1/u′(c∞) = 0, or that c∞ = 0, which contradicts W∞ ≥ W(k?). This establishes that
λ∞ > 0. From the slackness condition, we then have W∞ = W(k∞). Using the other
identities to substitute, we can write this as:

U
((

βR
(1− βR)θ

+
βRδ(θ − 1)
(1− βRδ)θ

+ 1
)

H(k∞)

)
=(

θ − 1
1− βδ

+
1

1− β

)−1

W(k∞).

The left hand side is strictly decreasing in k∞ and the right hand side is strictly increasing
in k∞. When k = 0, the right hand side is zero at k∞ = 0, while the left hand side is strictly
positive at zero as H(0) > 0, so a unique steady state k exists for k sufficiently small. If k
is such that the left hand side is less than the right hand side at k∞ = k, then k∞ = k is the
steady state. The remaining variables can be uniquely derived from k∞.

Case (ii) βR = 1: From the above steady state relationships, we have λ = 0, so k∞ = k?.
Note that any Λ∞ such that u∞ = U(Λ∞) is large enough to sustain k? can be a steady
state. In particular, if µ0 is such that k0 = k?, Λt = Λ0 = 1/µ0 for all t and the system
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stays there indefinitely. That is, let µ̄0 be such that
(

θ−1
1−βδ +

1
1−β

)
U
(

1
µ̄0

)
= W(k?). Then

any µ0 ≤ µ̄0 is a steady state.

We now characterize the dynamics away from the steady state for the case of δ = 0.
From (AI.4), we have Φt = Φ0 = 0 when δ = 0. This allows us to reduce the dimen-
sionality of the system. In particular, we will reduce the system to two variables: Λ and
V. The variable Λt is the discounted sum of multipliers through t− 1 plus the multiplier
on the initial budget constraint. This term reflects the extent that consumption in period
t relaxes the participation constraints for prior incumbents. In this manner, it represents
promises made to prior incumbents and will serve as our state variable. The variable Vt

is the present discounted value of private agent utility going forward from t.
From the definitions of W and V, we have Wt = (θ− 1)ut +Vt when δ = 0. We can use

this plus the complementary slackness condition to replace λ with a function L(Λ, V). To
this end, note that W = (θ − 1)U(Λ + λ) + V. Define L(Λ, V) = 0 if (θ − 1)U(Λ) + V >

W(k?). When W ≤ W(k?), we have W = W(k). In this case, we can define L(Λ, V) as the
λ that solves:

(θ − 1)U(Λ + λ) + V = W(H−1(λ)),

where we have inverted λ = H(k) to map k into λ, which is possible as H(k) is strictly
decreasing by Assumption 2. To see that there is a unique solution to this equation, the
left hand side is strictly increasing in λ while the right hand side is strictly decreasing. As
we are considering the case when (θ − 1)U + V ≤ W(k?), by assumption the left hand
side is less than or equal to the right hand side at λ = 0. Note that L is continuous in
both arguments. Moreover, straightforward manipulations show that L is non-increasing
in both arguments, and strictly decreasing when (θ − 1)U(Λ) + V ≤ W(k?), but that
Λ + L(Λ, V) is strictly increasing in Λ.

With this function in hand, our dynamic system can be written:

V′ = −U(Λ + L(Λ, V))

β
+

V
β

(D’)

Λ′ = βR (Λ + L(Λ, V)) .

For both equations, the right hand side is strictly increasing in Λ and V, so V′ and Λ′ are
uniquely defined given (Λ, V). We depict the dynamics using a phase diagram in figure
A.I. Panel (a) is the case βR = 1 and panel (b) treats βR < 1. The gray shaded area area
corresponds to points such that (θ − 1)U(Λ) + V ≥ W(k?). This area has a downward
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sloping border in the V × Λ plane as L is strictly increasing in both arguments when
(θ − 1)U(Λ) + V = W(k?).

The two bold lines correspond to points for which V′ = V and Λ′ = Λ, respectively.
From the first equation of D′, we see that V′ = V if V = U(Λ + L(Λ, V))/(1− β). In the
region where L(Λ, V) = 0, this equation is satisfied along a upward sloping locus in the in
the V ×Λ plane, as U is a strictly increasing function. Outside this region, use can appeal
to the fact that Λ + L(Λ, V) is increasing in Λ to show that the locus is upward sloping in
the unshaded region as well. From (D′), we see that for a given V, as we increase Λ to the
right of this line, then V′ > V, and vice versa for Λ to the left of this line. These dynamics
are represented by the vertical arrows in the phase diagram.

In panel (a), Λ′ = Λ when λ = 0. Therefore, Λ′ = Λ at all points in the gray shaded
region. In panel (b), when βR < 1, Λ′ = Λ along the downward sloping line. This locus
is defined by L(Λ, V) = (1− βR)Λ. This coincides with the gray region at Λ = 0, and is
strictly below it for Λ > 0. In this region, L is decreasing in both arguments, so the locus
is downward sloping in the V ×Λ plane. As we increase V for a given Λ starting from a
point on this locus, Λ′ < Λ outside the gray region and constant otherwise. The reverse
is true below the locus. These dynamics are represented by the horizontal arrows in the
unshaded region of the phase diagram.

The steady state is represented by the intersection of the two loci, which exists by
lemma 1. The dynamics imply saddle path stability. As lims→∞ βsVt+s = 0 is a condition
of optimality, the equilibrium allocation follows the saddle path. In panel (a), when βR =

1, there exists a continuum of steady states to the right of Λ∞ corresponding to cases in
which the system begins with low enough debt that we immediately have λ0 = 0 and
there are no further dynamics. In this case kt = k? and ct is constant for all t. When we
begin with enough debt that Λ0 < Λ∞, the system converges along a saddle path to the
Λ∞. During this transition, the investment wedge (λ = L(Λ, V)) monotonically declines
to zero. This is the case depicted by Λ0 in the figure.

When βR < 1 (panel (b)), there exists a unique steady state at which capital is distorted
away from k?, and for any initial condition the dynamics are monotonic towards this
steady state. If b0 is such that Λ0 < Λ∞ (the case depicted by Λ0 in the figure), V and
Λ increase over time, and so λ declines over time and k increases; while if initial debt is
sufficiently low (Λ0 > Λ∞), then k (weakly) decreases over time.

Note that in both panels, convergence is monotonoic toward the steady state, which
implies that capital also converges monotonically. We therefore can appeal to proposition
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4 and corollary 2 for the transition dynamics of private agents’ utility and external debt.
Moreover, as Λ0 = 1/µ0, the greater is µ0 the lower the initial Λ0 and V. This implies
initial capital is decreasing in µ0, and strictly decreasing if we begin with enough debt
that λ0 = L(Λ0, V0) > 0. As µ0 is the multiplier on the resource constraint, this implies
that initial capital is weakly decreasing in initial debt. We have now established part (ii)
of Proposition 3. We turn next to part (iii), the speed of convergence.

Speed of Convergence

We explore the speed of convergence by studying the first order dynamics in the neigh-
borhood of the steady state. To do so, we linearize the dynamic system and solve for the
speed of convergence along the saddle path. Note that in the case of βR = 1, this means
we are using the dynamics from “below” (the unshaded region in Figure A.I). We con-
sider general δ ∈ [−1/N, 1] and linearize the system (D).2 Letting x̂ = x− x∞, we have
the four equation linearized system:

k̂′ =
1

βδ

[
−θ − 1 + δ

W ′(k∞)

H′(k∞)

c′′(u∞)
+ 1
]

k̂− θ − 1 + δ

βδW ′(k∞)

1
c′′(u∞)

Λ̂− θ − 1 + δ

βδW ′(k∞)

1
c′′(u∞)

Φ̂− 1− δ

βδW ′(k∞)
V̂

V̂′ =
1
β

V̂ − 1
β

H′(k∞)

c′′(u∞)
k̂− 1

β

1
c′′(u∞)

Λ̂− 1
β

1
c′′(u∞)

Φ̂

Φ̂′ = βRδ
θ − 1

θ
H′(k∞)k̂ + βRδΦ̂

Λ̂′ = βR
1
θ

H′(k∞)k̂ + βRΛ̂

Let κ = W ′(k∞)c′′(u∞)
H′(k∞)

, which captures the nonlinearity of utility if c′′ > 0. Note that κ ≤ 0
given that H′(k) ≤ 0. We renormalize Λ and Φ to be Λ/H′(k∞) and Φ/H′(kss), and write
the linear system in matrix form:


k̂′

V̂′

Φ̂′

Λ̂′

 =


− 1

βδ

[
(θ − 1 + δ) 1

κ − 1
]
− 1−δ

βδW ′(kss)
− θ−1+δ

βδκ − θ−1+δ
βδκ

−W ′(kss)
βκ

1
β −W ′(kss)

βκ −W ′(kss)
βκ

βRδ θ−1
θ 0 βRδ 0

βR 1
θ 0 0 βR

×


k̂
V̂
Φ̂
Λ̂


2By considering dynamics around the steady state, we are assuming that the convergence results derived

for δ = 0 extend to arbitrary δ.
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The characteristic equation is:

Ch(x) ≡ x(xθ − βR(θ − 1 + δ))(−θ + xβ(θ − 1 + δ))

+ (x− βR)(xβ− 1)(x− βRδ)(xβδ− 1)θκ = 0

The linear case as a limiting case

Note that when κ → 0 (so that the utility becomes linear), the roots of the characteristic
equation are:

x ∈
{

0,
θ

β(θ − 1 + δ)
, βR

(
1− 1− δ

θ

)}
where the last one is the one we found in the linear case and corresponds to the highest
eigenvalue less than one.

Proof of Proposition 3 Part (iii)

To prove part (iii) of Proposition 3, we need to show that for all κ < 0 there is always a root
of the characteristic equation that is less than one but higher than βR

(
1− 1−δ

θ

)
. Towards

this goal, note that for κ < 0, θ > 1, and δ < 1, we have: Ch(0) < 0; Ch
(

βR
(

1− 1−δ
θ

))
>

0; Ch(βR) < 0; Ch(1) < 0; Ch
(

θ
β(θ−1+δ)

)
> 0; and limx→∞ Ch(x) = −∞. Therefore,

by continuity of the polynomial, we have two roots less than one, one between 0 and
βR
(

1− 1−δ
θ

)
, and the other between βR

(
1− 1−δ

θ

)
and βR. There are also two roots

greater than one, the first between 1 and θ
β(θ−1+δ)

and the other greater than θ
β(θ−1+δ)

.

Note that the largest root less than one is between βR
(

1− 1−δ
θ

)
and βR. Thus the sys-

tem is saddle path stable in the neighborhood of the steady state, with the the speed of
convergence of the system bounded above by − log

(
βR
(

1− 1−δ
θ

))
.

II Exogenous Growth

In this appendix we extend the model to include exogenous growth and show that the
benchmark results are unaffected up to a re-normalization.

Suppose that yt = f (kt, (1 + g)tlt), where g is the rate of exogenous labor-augmenting
technical progress. Constant returns to scale in production implies that yt = (1 +
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g)t f ((1 + g)−tkt, lt) or (1 + g)t f (k̂t, lt), where x̂t ≡ xt
(1+g)t , for x = k, c. The firm’s first

order condition can be written:

fk(kt, (1 + g)tlt) = r + d

fk(k̂t, lt) = r + d,

as fk is homogeneous of degree zero in k and l. We also have k̂t = (1 + g)−tkt, so that
(1 − τ) fk(k̂t, lt) = (1 − τ) fk(kt, (1 + g)tlt) = r + d. The budget constraint can be re-
written:

b0 ≤
∞

∑
t=0

R−t(1 + g)t
[

f (k̂t, lt)− (r + d)k̂t − ĉt

]
,

where we need r > g to ensure finiteness of the budget set.
Let us assume that u(c) is homogeneous of degree 1− σ, then the objective function

can be written:
∞

∑
t=0

βtu(ct) =
∞

∑
t=0

βt(1 + g)(1−σ)tu(ĉt),

where we need β(1 + g)1−σ < 1. Turning to the deviation utility:

c(kt) = f (kt, (1 + g)tlt)− (1− τ) fk(kt, (1 + g)tlt)kt

= (1 + g)t
[

f (k̂t, lt)− (1− τ) fk(k̂t, lt)k̂t

]
.

and we can define ĉ(k̂t) ≡ (1 + g)−tc(kt) = f (k̂t, lt)− (1− τ) fk(k̂t, lt)k̂t. So, the deviation
utility is:

W(kt) = θu(c(kt)) + β

(
δ(θ − 1)
1− βδ

+
1

1− β

)
u(c(k))

= (1 + g)(1−σ)t
[

θu(ĉ(k̂t)) + β

(
δ(θ − 1)
1− βδ

+
1

1− β

)
u(ĉ(k̂))

]
.

Define Ŵ(k̂t) = (1 + g)(σ−1)tW(kt), we have

Ŵ(k̂t) = θu(ĉ(k̂t)) + β

(
δ(θ − 1)
1− βδ

+
1

1− β

)
u(ĉ(k̂)).
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The planning problem can be written:

max
∞

∑
t=0

βt(1 + g)(1−σ)tu(ĉt)

subject to:

b0 ≤
∞

∑
t=0

R−t(1 + g)t
[

f (k̂t, lt)− (r + d)k̂t − ĉt

]
Ŵ(k̂t) ≤ θu(ĉt) + β(1 + g)(1−σ)

∞

∑
s=t+1

βs−t−1 (θδs−t + 1− δs−t) (1 + g)(1−σ)(s−t−1)u(ĉs)

k̂t ≤ k̂t.

Now define R̂ ≡ 1+r
1+g and β̂ ≡ β(1 + g)(1−œ). Then, the planner’s problem above can be

re-written:

max
∞

∑
t=0

β̂tu(ĉt)

subject to:

b0 ≤
∞

∑
t=0

R̂−t
[

f (k̂t, lt)− (r + d)k̂t − ĉt

]
Ŵ(k̂t) ≤ θu(ĉt) + β̂

∞

∑
s=t+1

β̂s−t−1 (θδs−t + 1− δs−t) u(ĉs)

k̂t ≤ k̂t.

Note that this problem is isomorphic to the original problem, (P) from the main text.
This discussion is important, not only to show that the results are robust to sustained

technological improvements (a fact of the data), but also it highlights the following: a
steady state in our model, once augmented with exogenous growth, will be a balanced
growth path that features constant debt to output ratios and an output level that will be
growing at the rate of g. In this environment, a long the transition to the steady state
a country that grows at a slower rate than g will accumulate liabilities as fraction of its
output, and the opposite will hold for a country that grows faster than g. If we take g, to
a first approximation, to be equal to the growth rate of the U.S., then one should expect
that countries that grew faster (slower) than the U.S. should have increased (decreased)
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external assets relative to GDP. This is exactly what Figure I in the main text shows.

III Capitalist Insiders

In this section of the appendix we extend the benchmark model to include domestic cap-
italists that enter the welfare functions of both the private agents setting initial policy
and the subsequent governments. Recall that a key distinguishing feature of a capitalist
in our environment is the ability to manage firms, a feature which prevented the gov-
ernment from converting savings into productive capital itself. Specifically, suppose that
a subset of the domestic population has entrepreneurial ability which enables them to
operate the production technology. We assume that all firms are managed by domestic
entrepreneurs, but continue to assume the economy is open in that firm financing may
originate abroad.

More concretely, consider an entrepreneur who manages a firm with capital stock k.
This capital stock is financed through a combination of equity and debt financing, where
the entrepreneur may own some of the equity. An entrepreneur hires workers and pays
holders of debt and equity using after tax profits. We extend the limited commitment
paradigm to encompass domestic entrepreneurs. That is, an entrepreneur can renege on
the firm’s contracts and divert resources to his or her own private gain. Let Ue(k) denote
the lifetime utility of a manager who deviates given a firm’s capital stock k. We provide a
specific formulation of Ue(k) below; at this point, there is no need to put additional struc-
ture on the deviation utility of the entrepreneurs. Given the lack of commitment, firm fi-
nancing must be self-enforcing. If ce

t is the entrepreneur’s consumption absent deviation,
then the entrepreneur faces a financing constraint of the form Ue(kt) ≤ ∑∞

s=0 βsu(ce
t+s), for

every t. This constraint is the individual firm’s counterpart to the government’s borrow-
ing constraint, and corresponds to the constraint studied in Alburquerque and Hopen-
hayn (2004). Note that Ue(k) is the utility from deviation for the entrepreneur given the
equilibrium actions of all other agents, including the government.

We study the private agents’ planning problem.3 Let the private agents’ welfare func-
tion be given by γu(cw) + (1− γ)u(ce), where cw and ce are the per capita consumption
of workers and entrepreneurs, respectively, and γ ∈ (0, 1] is the Pareto weight placed on
workers. For ease of exposition, we assume the government places weight γ on workers

3The efficient allocation from the planning problem can be decentralized with appropriate taxes and
transfers. We omit the details.
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as well, but this could be relaxed. The planning problem can be written as:

max
∞

∑
t=0

βt [γu(cw
t ) + (1− γ)u(ce

t)] (P’)

subject to

b0 ≤
∞

∑
t=0

R−t ( f (kt)− cw
t − ce

t − kt+1 + (1− d)kt)− (1 + r)k0

W(kt) ≤ θ [γu(cw
t ) + (1− γ)u(ce

t)] +
∞

∑
s=1

βs (θδs + 1− δs) [(γu(cw
t+s) + (1− γ)u(ce

t+s))] , ∀t

Ue(kt) ≤∑ βsu(ce
t+s), ∀t.

The aggregate resource constraint states that the present value of output minus consump-
tion and net investment must equal initial net foreign debt. This constraint is the same
as (12), although written in a slightly different way. The second constraint is the gov-
ernment’s participation constraint, which is modified to include both types of agents.
We assume that the incumbent’s preference for current consumption is uniform across
agents. The final constraint is the entrepreneur’s participation constraint ensuring that
firm financing is self enforcing. Note that even though capitalists enter the welfare func-
tion of the government there is a temptation for the current incumbent to expropriate
capital when θ > 1.

Before solving the planning problem, we discuss how the government’s deviation util-
ity W(k) is affected by the presence of insider capitalists. We maintain our assumption
that if the government deviates, the economy reverts to the Markov Perfect Equilibrium
(MPE) under financial autarky. To set notation, let k denote the current capital stock inher-
ited by the current incumbent, and k′ the capital stock bequeathed to the next government.
Let V(k′) denote the continuation value of the current incumbent if it leaves k′ to the next
government. That is, V(kt) = ∑s βs (θδs + 1− δs) [γu(cw

t+s) + (1− γ)u(ce
t+s)], where the

sequence of consumptions are chosen by future incumbent governments given the inher-
ited state variable k. Similarly, let Ue(k′) denote the continuation value of entrepreneurs
conditional on k′. The current incumbent’s problem is therefore

W(k) = max
ce,cw,k′

θ [γu(cw) + (1− γ)u(ce)] + βV(k′) (III.6)
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subject to

cw + ce + k′ ≤ f (k) + (1− d)k

u(ce) + βUe(k′) ≥ Ue(k).

Note that we have set τ = 1, so the government has access to total output. We continue
to use the notation Ue(k) to denote the entrepreneurs’ deviation utility, although this is
a slight abuse of notation – the value to an entrepreneur diverting with capital stock k
will depend on the path of taxation, which in general will be different in the MPE. Other
than this last constraint, the MPE is the closed economy neo-classical growth model with
a quasi-hyperbolic decision maker discussed in section 5 of the main text.

Returning to the planning problem (P′), we let µ0, R−t λtµ0
λθ , and R−tµ0ηt be the multi-

pliers on the three constraints. The first order conditions are:

1 = γu′(cw
t )

(
βtRt

µ0
+

t

∑
s=0

βsRs λt−s

γθ
+

t

∑
s=0

βsRsδs (θ − 1)λt−s

γθ

)
(III.7)

1 = (1− γ)u′(ce
t)

(
βtRt

µ0
+

t

∑
s=0

βsRs λt−s

γθ
+

t

∑
s=0

βsRsδs (θ − 1)λt−s

γθ
(III.8)

+
1

1− γ

t

∑
s=0

βsRsλt−s

)
(III.9)

f ′(kt) = r + d +
λt

γθ
W ′(kt) + ηtUe′(kt). (III.10)

Before analyzing the problem in detail, a few points are worth mentioning. The bench-
mark case can be recovered by setting γ = 1 and relaxing the entrepreneurs borrowing
constraint ηt = 0. Even if γ is less than one, the first order condition for workers remains
essentially the same as before (compare (III.7) and (15)) – the only difference is a scaling
factor. Moreover, conditions (III.7) and (III.9) can be combined to yield:(

1− γ

γ

)
u′(ce

t)

u′(cw
t )

+ u′(ce
t)

t

∑
s=0

βsRsηt−s = 1. (III.11)

This condition says that the plan allocates consumption to workers and entrepreneurs
partially according to their Pareto weights, but entrepreneurs may be given additional
resources when their borrowing constraint binds.
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III.1 The Linear Case Revisited

We now reconsider our benchmark results with linear utility. The case of γ ≥ 1/2
provides a straightforward extension of our basic model as there exists an interior op-
timum. If γ > 1/2, then the government strictly prefers workers to entrepreneurs as
a group, and transferring resources from the entrepreneurs to the workers relaxes the
government’s constraint. Similarly, transferring resource from entrepreneurs to work-
ers raises the planner’s objective function. However, there is a limit on how many re-
sources can be transferred, as the entrepreneurs always have the option to deviate. This
ensures that entrepreneurial consumption is not driven to minus infinity in the linear
case. We therefore assume γ ≥ 1/2 in what follows. In the linear case, we also assume
that Ue(k) = f (k) + (1− d)k. That is, an entrepreneur that deviates simply consumes
its output and un-depreciated capital. In this formulation, the entrepreneur’s deviation
utility is independent of government actions.

In the linear case, we can rewrite (III.7) as:

1 = βtRt γ

µ0
+

t

∑
s=0

βsRs λt−s

θ
+

t

∑
s=0

βsRsδs(θ − 1)
λt−s

θ
.

Note that this expression is the same as (17), except that 1/µ0 has been replace by γ/µ0.
Recall that µ0 only affects λ0, but does not influence the dynamics in the linear case.
Therefore, the only change in the path of λt is that the period 0 constraint is λ = 1− γ/µ0

rather than 1− 1/µ0. Thus the dynamics of λt are the same as before, save for the initial
term now has an explicit weight for the workers, γ.

Turning to (III.11), we have

t

∑
s=0

βsRsηt−s = 1− 1− γ

γ
.

This implies that η0 = 1− 1−γ
γ , and ηt = (1− βR)η0 for t > 0. If γ = 1/2, then ηt = 0

for all t. This follows as workers and entrepreneurs receive equal weights and have lin-
ear utility, so the optimal plan will transfer resources from workers to entrepreneurs un-
til the entrepreneur’s constraint is slack. If βR = 1, then the entrepreneur’s constraint
binds only in the initial period for any γ > 1/2. With linear utility and patience, the
entrepreneur is willing to delay consumption into the future (i.e., post a bond), relaxing
the borrowing constraint. However, this does not imply that capital is first best – even if
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the borrowing constraint does not bind, the entrepreneur is subject to government taxa-
tion. In all cases, ηt is constant after the first period and does not depend on the political
parameters θ and δ: the entrepreneur’s lack of commitment does not generate dynamics
beyond the first period. Therefore, θ and δ only influences the dynamics of the economy
through λ, the multiplier on the government’s participation constraint.

As in the benchmark case, the dynamics of λt pin down the dynamics of capi-
tal. Specifically, from the first order condition for capital we have f ′(kt) − r − d =
λt
γθ W ′(kt) + ηtUe′(kt). After manipulating the envelope and first order conditions from
(III.6), we have W ′(k) = θ(1 − γ) ( f ′(k) + 1− d), where we have used the fact that
Ue′(k) = f ′(k) + 1 − d and that γ ≥ 1/2 to guarantee an interior solution. Substitut-
ing into the first order condition for capital yields:

λt =
γ

1− γ

(
f ′(kt)− r− d
f ′(kt) + 1− d

)
− (1− βR)

(
2γ− 1
1− γ

)
(III.12)

for all t ≥ 1. As in the benchmark model, λt is inversely related to kt.
This appendix has shown that the results derived in Section 3.1 carry over directly to

an environment in which domestic insiders manage firms.

IV Near sufficiency of (1− δ)/θ

In this section we numerically compute the speed of convergence of the linearized system
for concave utility and show that the ratio (1− δ)/θ is the major determinant.

The parameters are as follows (same as in the paper). A period is 5 years, and u(c) =
log(c), f (k) = k0.33, βR = 1, R = 1.2, d = 0.2 and τ̄ = 0.6.

The table below shows the (5 year) speed of convergence of the saddle path in the
linearized model for different values of δ and θ so that the ratio (1− δ)/θ is constant.

θ δ ratio speed

3.00 0.00 3 0.27
2.85 0.05 3 0.28
2.70 0.10 3 0.28
2.55 0.15 3 0.29
2.40 0.20 3 0.29
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θ δ ratio speed

7.00 0.00 7 0.11
6.65 0.05 7 0.12
6.30 0.10 7 0.12
5.95 0.15 7 0.12
5.60 0.20 7 0.12
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Figure A.I: Phase diagram for δ = 0

The shaded region represents points for which k = k?. The upward sloping bold line rep-
resents V′ = V. In panel (a), the shaded region also represents points for which Λ′ = Λ.
In panel (b), Λ′ = Λ for points along the downward sloping bold line. The intersec-
tion of the V′ = V line with the shaded region represents steady states in panel (a). In
panel (b), the intersection of the two lines defines the unique steady state. The (red) line
marked with arrows represents the stable manifold (saddle path). The point Λ0 depicts
one possible initial value, which is determined by initial debt.
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